Prompt Engineering Guide: 2026 Edition (Steal My System)

Votre vidéo commence dans 10
Passer (5)
Formation gratuite en FR pour les membres inscrits sur les sites de vidéos

Merci ! Partagez avec vos amis !

Vous avez aimé cette vidéo, merci de votre vote !

Ajoutées by admin
1 Vues
Prompt Engineering Guide: 2026 Edition (Steal My System)
Want a single framework that works across ChatGPT (GPT-5/4.1), Claude 4, Google Gemini, Perplexity, and even reasoning models (O3 / O4-mini)? This episode distills hundreds of hours of testing + the latest docs into a reusable prompt engineering system you can apply to any large language model. We’ll cover the core template (Role → Task → Context → Examples → Output → Constraints → Instructions), then layer on advanced techniques like Chain of Verification (CoV) and Reverse Prompting, and finish with how context engineering (RAG, memory, connectors) complements great prompts.

What you will learn
- The 2026 Prompt Framework that travels cleanly across models (and what to tweak per model).
- Model-specific rules: when to add step-by-step guidance vs. when it hurts (reasoning models).
- Chain of Verification to reduce hallucinations and force evidence-backed answers.
- Reverse Prompting to let the model craft (and run) the optimal prompt for your goal.
- Context Engineering vs Prompt Engineering - how RAG, memory, and external data supercharge results.
- Per-model tips for GPT-5, GPT-4.1, Claude 4, Gemini 2.5, O3/O4-mini, Perplexity (search-centric).

Timestamps
00:00 Introduction
00:49 The Prompting Framework
09:35 Chain of Verification
10:50 Reverse Prompting
12:17 Prompt Engineering vs. Context Engineering

Key takeaways (cheat sheet)
- Standard models (GPT-5/4.1, Claude, Gemini): ask for step-by-step thinking, state uncertainty over guessing, use few-shot examples for tone/format.
- Reasoning models (O3/O4-mini): don’t force chain-of-thought; keep prompts lean; minimize context.
- Perplexity: treat as retrieval-augmented generation, avoid few-shot examples in the initial prompt; use CoV as a follow-up.
- Output control: specify format, length, and structure precisely (tables, sections, word counts).
- Constraints: crisp, measurable rules outperform vague ones.

Resources
- Framework Explanation
https://docs.google.com/document/d/12obzedWKGlsaHgwVDzwz_leA0PN-9e3F/edit?usp=sharing&ouid=118261041881417412634&rtpof=true&sd=true
- Plug-and-Play Framework
https://docs.google.com/document/d/13p5fhgdXARKF0ZL7EBq4N6ju_--0QnNrweg8KXVWxM0/edit?usp=sharing

Who this is for
Analysts, operators, PMs, consultants, and creators who want reliable, repeatable outputs—not one-off prompt hacks. Perfect if you’re comparing prompt engineering courses or want a faster path to learn prompt engineering in practice.

If this helps, consider subscribing. I post weekly, no-fluff tutorials that turn AI & finance into your personal advantage.

Search helpers: prompt engineering, what is prompt engineering, learn prompt engineering, prompt engineering guide 2026, prompt engineering course, LLM prompting, ChatGPT tricks, Claude skills, Gemini prompts, RAG, context engineering, large language models.
Catégories
prompts ia

Ajouter un commentaire

Commentaires

Soyez le premier à commenter cette vidéo.