I Found the Easiest Way to Build Self-Optimizing AI Prompts (Beginner to Pro Path)

Votre vidéo commence dans 10
Passer (5)
La méthode vendre des programmes à 5000 euros et plus

Merci ! Partagez avec vos amis !

Vous avez aimé cette vidéo, merci de votre vote !

Ajoutées by admin
8 Vues
What’s really happening when big companies install billion dollar prompt engineering pipelines?

The common story is you need elite prompters and Python to optimize — but the reality is more nuanced: you can let AI optimize prompts in chat and then scale the same principles with DSPy.

In this video, I share the inside scoop on self-optimizing prompts that scale from chat to production:
• Why letting AI tune prompts beats ad-hoc tweaking.
• How to do it in ChatGPT without touching Python.
• What DSPy adds: signatures, modules, optimizers, metrics.
• Where teams win—and where governance, cost, and quality creep bite.

Teams can get consistent, scalable quality by treating prompts as code, but without clear metrics, governance, and cost control, you’ll trade speed for chaos.

Subscribe for daily AI strategy and news.
For deeper playbooks and analysis: https://natesnewsletter.substack.com/
Catégories
prompts ia
Mots-clés
AI strategy, large language models, LLMs

Ajouter un commentaire

Commentaires

Soyez le premier à commenter cette vidéo.