Arize:Observe 2025 Keynote: Introducing Alyx & ADB

Votre vidéo commence dans 10
Passer (5)
Formation gratuite en FR pour les membres inscrits sur les sites de vidéos

Merci ! Partagez avec vos amis !

Vous avez aimé cette vidéo, merci de votre vote !

Ajoutées by admin
21 Vues
Explore the future of AI engineering, agent infrastructure, and evals in this Arize Observe 2025 keynote hosted by Arize AI founders Jason Lopatecki and Aparna Dhinakaran.

Chapters:
03:00 - Autonomy in Products: From Tab Completion to Task Solving
05:00 - The Challenge of Agent Context Management
06:00 - Evaluating, Controlling, and Improving AI Agents
06:46 - Introducing Alyx: Arize’s Contextual Agent for AI Engineers
08:01 - Alyx Demo: Trace Troubleshooting + Hotkey Workflows
10:20 - Visual Agent Debugging with Agent Flow Tracing
11:00 - Multi-Agent Architectures & Debugging Hand-offs
12:30 - Multi-Agent Tracing Product Launch
13:30 - Session & Trajectory Evaluations: Measuring Full-Agent Journeys
14:50 - Prompt Learning: Optimization Powered by Annotations & Feedback
16:20 - Prompt Playground Views: Shareable, Saveable IDE for Prompts
17:00 - Alyx MCP Assistant: IDE-Native Debugging Tools
18:00 - Commitment to Open Source: Phoenix Upgrades
19:00 - Multi-User Phoenix Cloud, Cost Tracking, and Bedrock Support
21:00 - One More Thing: Introducing ADB – Arize’s OLAP Engine for AI Data
22:30 - Inside ADB: Real-Time Ingest, Petabyte Scale, and Sub-Second Queries

This year’s keynote introduces Alyx, a redesigned in-product AI agent that brings rich context, native trace troubleshooting, and IDE integrations to your debugging workflows—alongside powerful new capabilities in multi-agent visualization, session-level evaluation, and prompt optimization.

???? From observability to real-time prompt tuning, this keynote is your front-row seat to the next decade of building with AI agents.

???? Featured Product Drops:

Alyx (Copilot v3): A context-rich agent that helps you diagnose issues on the fly—invoked with a hotkey (cmd+L) and integrated into Cursor or Claude Code via MCP.

Agent Flow Tracing: Visualize LLM decision paths and trace execution logic

Multi-Agent Tracing: Inspect agent handoffs and orchestration bottlenecks

Session & Trajectory Evaluations: Measure coherence, memory, and problem-solving steps across full conversations

Prompt Learning: Optimize prompts using human or LLM feedback—not just scalar scores

Prompt Playground Views: Save and share side-by-side prompt experiments

Alyx MCP Assistant: Access all of Alyx’s skills directly from Cursor, Claude Code, and more

Phoenix Upgrades: Multi-user collaboration, cost tracking, and Bedrock model support

ADB (Arize Database): A blazing-fast, scalable OLAP engine purpose-built for AI workloads

???? Whether you're building copilots, customer support agents, or research assistants, this keynote showcases the latest tools to help you evaluate, debug, and optimize LLM-powered systems at scale.

???? Read More:
Full product recap:
https://arize.com/blog/observe-2025-releases/

Inside ADB — Arize’s OLAP engine:
https://arize.com/blog/introducing-adb-arizes-proprietary-olap-database/

#AIEngineering #LLMops #AgentOps #Alyx #ADB #PromptEngineering #AIObservability #PhoenixAI #ArizeObserve #OpenSourceAI
Catégories
prompts ia

Ajouter un commentaire

Commentaires

Soyez le premier à commenter cette vidéo.